Miniconda介绍
Miniconda 是一个开源的 Python 和 R 语言的发行版,它包含了conda、Python和R的核心组件以及众多常用的第三方包。Miniconda 的目标是为数据科学和机器学习的开发者提供一个轻量级、易于安装和管理的环境。
Miniconda 的主要特点如下:
轻量级:Miniconda 只包含了最基本的组件,因此安装文件非常小,便于在不同的计算机和操作系统上进行安装。
易于安装和管理:Miniconda 提供了一个简单的命令行界面,用户可以轻松地创建新的环境、安装所需的包以及管理已安装的包。
跨平台:Miniconda 支持 Windows、macOS 和 Linux 操作系统,方便用户在不同平台上进行开发和实验。
隔离性:通过创建不同的环境,用户可以在不同的项目中使用不同版本的包,避免了包之间的冲突。
依赖管理:Miniconda 使用 Conda 包管理器来管理 Python 和 R 的依赖关系,确保项目的正常运行。
Miniconda 是一个非常实用的工具,尤其适合数据科学和机器学习领域的开发者,可以帮助他们快速搭建一个高效、稳定的开发环境。
配置conda源
执行命令conda config,在C:\Users\Administrator路径下产生一个.condarc文件,并写入如下内容
阿里镜像(废弃):
channels: - defaults show_channel_urls: true default_channels: - https://mirrors.aliyun.com/anaconda/pkgs/free/ - https://mirrors.aliyun.com/anaconda/pkgs/main - https://mirrors.aliyun.com/anaconda/pkgs/r - https://mirrors.aliyun.com/anaconda/pkgs/msys2 custom_channels: conda-forge: https://mirrors.aliyun.com/anaconda/cloud msys2: https://mirrors.aliyun.com/anaconda/cloud bioconda: https://mirrors.aliyun.com/anaconda/cloud menpo: https://mirrors.aliyun.com/anaconda/cloud pytorch: https://mirrors.aliyun.com/anaconda/cloud pytorch-lts: https://mirrors.aliyun.com/anaconda/cloud simpleitk: https://mirrors.aliyun.com/anaconda/cloud envs_dirs: - D:\\miniconda3\\envs
|
清华镜像
channels: - defaults show_channel_urls: true default_channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2 custom_channels: conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud deepmodeling: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/ envs_dirs: - D:\\miniconda3\\envs
|
注:envs_dirs可以写入python环境安装的位置
修改Miniconda默认环境路径
执行命令conda config --show查看conda的配置信息
add_anaconda_token: True add_pip_as_python_dependency: True aggressive_update_packages: - ca-certificates - certifi - openssl allow_conda_downgrades: False allow_cycles: True allow_non_channel_urls: False allow_softlinks: False allowlist_channels: [] always_copy: False always_softlink: False always_yes: None anaconda_upload: None auto_activate_base: True auto_stack: 0 auto_update_conda: True bld_path: changeps1: True channel_alias: https://conda.anaconda.org channel_priority: flexible channel_settings: [] channels: - defaults client_ssl_cert: None client_ssl_cert_key: None clobber: False conda_build: {} create_default_packages: [] croot: C:\Users\Administrator\conda-bld custom_channels: anaconda/pkgs/free: https://mirrors.aliyun.com anaconda/pkgs/main: https://mirrors.aliyun.com anaconda/pkgs/r: https://mirrors.aliyun.com anaconda/pkgs/msys2: https://mirrors.aliyun.com conda-forge: https://mirrors.aliyun.com/anaconda/cloud msys2: https://mirrors.aliyun.com/anaconda/cloud bioconda: https://mirrors.aliyun.com/anaconda/cloud menpo: https://mirrors.aliyun.com/anaconda/cloud pytorch: https://mirrors.aliyun.com/anaconda/cloud pytorch-lts: https://mirrors.aliyun.com/anaconda/cloud simpleitk: https://mirrors.aliyun.com/anaconda/cloud custom_multichannels: defaults: - https://mirrors.aliyun.com/anaconda/pkgs/free - https://mirrors.aliyun.com/anaconda/pkgs/main - https://mirrors.aliyun.com/anaconda/pkgs/r - https://mirrors.aliyun.com/anaconda/pkgs/msys2 local: debug: False default_channels: - https://mirrors.aliyun.com/anaconda/pkgs/free - https://mirrors.aliyun.com/anaconda/pkgs/main - https://mirrors.aliyun.com/anaconda/pkgs/r - https://mirrors.aliyun.com/anaconda/pkgs/msys2 default_python: 3.11 default_threads: None deps_modifier: not_set dev: False disallowed_packages: [] download_only: False dry_run: False enable_private_envs: False env_prompt: ({default_env}) envs_dirs: - C:\Users\Administrator\.conda\envs - D:\miniconda3\envs - C:\Users\Administrator\AppData\Local\conda\conda\envs error_upload_url: https://conda.io/conda-post/unexpected-error execute_threads: 1 experimental: [] extra_safety_checks: False fetch_threads: 5 force: False force_32bit: False force_reinstall: False force_remove: False ignore_pinned: False json: False local_repodata_ttl: 1 migrated_channel_aliases: [] migrated_custom_channels: {} non_admin_enabled: True notify_outdated_conda: True number_channel_notices: 5 offline: False override_channels_enabled: True path_conflict: clobber pinned_packages: [] pip_interop_enabled: False pkgs_dirs: - D:\miniconda3\pkgs - C:\Users\Administrator\.conda\pkgs - C:\Users\Administrator\AppData\Local\conda\conda\pkgs proxy_servers: {} quiet: False remote_backoff_factor: 1 remote_connect_timeout_secs: 9.15 remote_max_retries: 3 remote_read_timeout_secs: 60.0 repodata_fns: - current_repodata.json - repodata.json repodata_threads: None report_errors: None restore_free_channel: False rollback_enabled: True root_prefix: D:\miniconda3 safety_checks: warn sat_solver: pycosat separate_format_cache: False shortcuts: True show_channel_urls: True signing_metadata_url_base: None solver: classic solver_ignore_timestamps: False ssl_verify: True subdir: win-64 subdirs: - win-64 - noarch target_prefix_override: track_features: [] unsatisfiable_hints: True unsatisfiable_hints_check_depth: 2 update_modifier: update_specs use_index_cache: False use_local: False use_only_tar_bz2: False verbosity: 0 verify_threads: 1
|
可以看到envs_dir属性,执行conda新建环境命令会先将环境安装到C:\Users\Administrator\.conda\envs,如果不合适会依次寻找路径安装。
envs_dirs: - C:\Users\Administrator\.conda\envs - D:\miniconda3\envs - C:\Users\Administrator\AppData\Local\conda\conda\envs
|
执行命令conda config --add envs_dirs D:\miniconda3\envs,表示在配置中的envs_dirs添加路径“D:\miniconda3\envs”,该路径成为首要安装位置
如果安装位置仍为C盘,则需要进行权限授权。
conda环境命令
新建环境
conda create -n py37 python=3.7
|
注:-n后面跟住环境名
删除环境
conda remove -n py37 --all
|
激活环境
退出环境
查看所有环境
添加配置
conda config --add [变量名] [值] -- conda config --add envs_dirs D:\miniconda3\envs
|
删除配置
conda config --remove [变量名] [值] -- conda config --remove envs_dirs D:\miniconda3\envs
|
常见问题
CommandNotFoundError
如果是第一次使用miniconda,执行切换环境命令时出现CommandNotFoundError: Your shell has not been properly configured to use 'conda activate'.,则需要初始化conda
执行依次命令,再重新切换一次环境即可
conda init conda
conda activate py368
|