Miniconda介绍

Miniconda 是一个开源的 Python 和 R 语言的发行版,它包含了conda、Python和R的核心组件以及众多常用的第三方包。Miniconda 的目标是为数据科学和机器学习的开发者提供一个轻量级、易于安装和管理的环境。

Miniconda 的主要特点如下:

  1. 轻量级:Miniconda 只包含了最基本的组件,因此安装文件非常小,便于在不同的计算机和操作系统上进行安装。

  2. 易于安装和管理:Miniconda 提供了一个简单的命令行界面,用户可以轻松地创建新的环境、安装所需的包以及管理已安装的包。

  3. 跨平台:Miniconda 支持 Windows、macOS 和 Linux 操作系统,方便用户在不同平台上进行开发和实验。

  4. 隔离性:通过创建不同的环境,用户可以在不同的项目中使用不同版本的包,避免了包之间的冲突。

  5. 依赖管理:Miniconda 使用 Conda 包管理器来管理 Python 和 R 的依赖关系,确保项目的正常运行。

Miniconda 是一个非常实用的工具,尤其适合数据科学和机器学习领域的开发者,可以帮助他们快速搭建一个高效、稳定的开发环境。

配置conda源

执行命令conda config,在C:\Users\Administrator路径下产生一个.condarc文件,并写入如下内容

阿里镜像(废弃):

channels:
- defaults
show_channel_urls: true
default_channels:
- https://mirrors.aliyun.com/anaconda/pkgs/free/
- https://mirrors.aliyun.com/anaconda/pkgs/main
- https://mirrors.aliyun.com/anaconda/pkgs/r
- https://mirrors.aliyun.com/anaconda/pkgs/msys2
custom_channels:
conda-forge: https://mirrors.aliyun.com/anaconda/cloud
msys2: https://mirrors.aliyun.com/anaconda/cloud
bioconda: https://mirrors.aliyun.com/anaconda/cloud
menpo: https://mirrors.aliyun.com/anaconda/cloud
pytorch: https://mirrors.aliyun.com/anaconda/cloud
pytorch-lts: https://mirrors.aliyun.com/anaconda/cloud
simpleitk: https://mirrors.aliyun.com/anaconda/cloud
envs_dirs:
- D:\\miniconda3\\envs

清华镜像

channels:
- defaults
show_channel_urls: true
default_channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
deepmodeling: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/
envs_dirs:
- D:\\miniconda3\\envs

注:envs_dirs可以写入python环境安装的位置

修改Miniconda默认环境路径

执行命令conda config --show查看conda的配置信息

add_anaconda_token: True
add_pip_as_python_dependency: True
aggressive_update_packages:
- ca-certificates
- certifi
- openssl
allow_conda_downgrades: False
allow_cycles: True
allow_non_channel_urls: False
allow_softlinks: False
allowlist_channels: []
always_copy: False
always_softlink: False
always_yes: None
anaconda_upload: None
auto_activate_base: True
auto_stack: 0
auto_update_conda: True
bld_path:
changeps1: True
channel_alias: https://conda.anaconda.org
channel_priority: flexible
channel_settings: []
channels:
- defaults
client_ssl_cert: None
client_ssl_cert_key: None
clobber: False
conda_build: {}
create_default_packages: []
croot: C:\Users\Administrator\conda-bld
custom_channels:
anaconda/pkgs/free: https://mirrors.aliyun.com
anaconda/pkgs/main: https://mirrors.aliyun.com
anaconda/pkgs/r: https://mirrors.aliyun.com
anaconda/pkgs/msys2: https://mirrors.aliyun.com
conda-forge: https://mirrors.aliyun.com/anaconda/cloud
msys2: https://mirrors.aliyun.com/anaconda/cloud
bioconda: https://mirrors.aliyun.com/anaconda/cloud
menpo: https://mirrors.aliyun.com/anaconda/cloud
pytorch: https://mirrors.aliyun.com/anaconda/cloud
pytorch-lts: https://mirrors.aliyun.com/anaconda/cloud
simpleitk: https://mirrors.aliyun.com/anaconda/cloud
custom_multichannels:
defaults:
- https://mirrors.aliyun.com/anaconda/pkgs/free
- https://mirrors.aliyun.com/anaconda/pkgs/main
- https://mirrors.aliyun.com/anaconda/pkgs/r
- https://mirrors.aliyun.com/anaconda/pkgs/msys2
local:
debug: False
default_channels:
- https://mirrors.aliyun.com/anaconda/pkgs/free
- https://mirrors.aliyun.com/anaconda/pkgs/main
- https://mirrors.aliyun.com/anaconda/pkgs/r
- https://mirrors.aliyun.com/anaconda/pkgs/msys2
default_python: 3.11
default_threads: None
deps_modifier: not_set
dev: False
disallowed_packages: []
download_only: False
dry_run: False
enable_private_envs: False
env_prompt: ({default_env})
envs_dirs:
- C:\Users\Administrator\.conda\envs
- D:\miniconda3\envs
- C:\Users\Administrator\AppData\Local\conda\conda\envs
error_upload_url: https://conda.io/conda-post/unexpected-error
execute_threads: 1
experimental: []
extra_safety_checks: False
fetch_threads: 5
force: False
force_32bit: False
force_reinstall: False
force_remove: False
ignore_pinned: False
json: False
local_repodata_ttl: 1
migrated_channel_aliases: []
migrated_custom_channels: {}
non_admin_enabled: True
notify_outdated_conda: True
number_channel_notices: 5
offline: False
override_channels_enabled: True
path_conflict: clobber
pinned_packages: []
pip_interop_enabled: False
pkgs_dirs:
- D:\miniconda3\pkgs
- C:\Users\Administrator\.conda\pkgs
- C:\Users\Administrator\AppData\Local\conda\conda\pkgs
proxy_servers: {}
quiet: False
remote_backoff_factor: 1
remote_connect_timeout_secs: 9.15
remote_max_retries: 3
remote_read_timeout_secs: 60.0
repodata_fns:
- current_repodata.json
- repodata.json
repodata_threads: None
report_errors: None
restore_free_channel: False
rollback_enabled: True
root_prefix: D:\miniconda3
safety_checks: warn
sat_solver: pycosat
separate_format_cache: False
shortcuts: True
show_channel_urls: True
signing_metadata_url_base: None
solver: classic
solver_ignore_timestamps: False
ssl_verify: True
subdir: win-64
subdirs:
- win-64
- noarch
target_prefix_override:
track_features: []
unsatisfiable_hints: True
unsatisfiable_hints_check_depth: 2
update_modifier: update_specs
use_index_cache: False
use_local: False
use_only_tar_bz2: False
verbosity: 0
verify_threads: 1

可以看到envs_dir属性,执行conda新建环境命令会先将环境安装到C:\Users\Administrator\.conda\envs,如果不合适会依次寻找路径安装。

envs_dirs:
- C:\Users\Administrator\.conda\envs
- D:\miniconda3\envs
- C:\Users\Administrator\AppData\Local\conda\conda\envs

执行命令conda config --add envs_dirs D:\miniconda3\envs,表示在配置中的envs_dirs添加路径“D:\miniconda3\envs”,该路径成为首要安装位置

如果安装位置仍为C盘,则需要进行权限授权。

完全控制

conda环境命令

新建环境

conda create -n py37 python=3.7

注:-n后面跟住环境名

删除环境

conda remove -n py37 --all

激活环境

conda activate py37

退出环境

conda deactivate

查看所有环境

conda env list

添加配置

conda config --add [变量名] [值]
-- conda config --add envs_dirs D:\miniconda3\envs

删除配置

conda config --remove [变量名] [值]
-- conda config --remove envs_dirs D:\miniconda3\envs

常见问题

CommandNotFoundError

如果是第一次使用miniconda,执行切换环境命令时出现CommandNotFoundError: Your shell has not been properly configured to use 'conda activate'.,则需要初始化conda

执行依次命令,再重新切换一次环境即可

conda init
conda

conda activate py368